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Abstract. We present a class of random potentials that allow for extended states at selected 
energies. These potentials can be obtained by starting from an underlying non-disordered 
potential and inserting in it in a random way particular potential profiles defined on a finite 
length. By making a suitable choice of the potentials to be inserted the energies of the 
extended states can be fixed arbitrarily. 

A great deal of work has shown that for one-dimensional random potentials all electronic 
states that are solutions of the Schrodinger equation are, in general, localised [l]. 
However, Denbigh and Rivier [2] have found a particular class of random potentials 
that allow for extended states. It is, therefore, of interest to identify the potentials with 
this property in order to understand under which conditions the randomness is not 
sufficient to localise all the solutions of the Schrodinger equation. In this Comment we 
present a more general class of such one-dimensonal potentials and show that the 
potentials given by Denbigh and Rivier belong to it as particular cases. 

The potentials V(x) of this class can be described by giving an iterative procedure to 
construct them. These potentials are built by starting from a non-random underlying 
potential U(x) defined on the interval ( - C O ,  a). We assume that U(x) has extended 
states. The potential V(x) is obtained by making successive random insertions in U(x) 
of a potential profile W(x), which is defined on a finite length L. This is done in the 
following way. In the first step, we randomly determine a position x1 and construct the 
potential V’(x): 

forx < L 

V’(X) = W(x) forxl  < x < x l  + L (1) i U(x - L )  forx > x l  + L. 

In the second step we determine x2 and insert, in the same way, W ( x )  in V’(x)-and so 
on until we reach a finite density of insertions on the whole real axis. 
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In general, this procedure will localise all the extended states of the original potential 
U ( x ) .  However, we will show that under particular conditions on W ( x )  this randomness 
is insufficient to localise all these extended states. To determine such conditions we study 
the problem by the transfer matrix method. We define the transfer matrix M(x, x ‘ ;  E )  
for transfer from x to x’ as follows: 

where v is the wavefunction and v ’  its derivative. The matrix M(x, x ’ ;  E )  depends on 
the energy E and on the potential on the interval [x, x ’ ] .  

If we define an arbitrary set of points { x , ~ }  that satisfies x,+ > x, and limn+= x, = x, 

the localisation length 5,  which is the reciprocal of the Lyapunov exponent of the product 
of the matrices M, can be expressed as [3] 

The Oseledec theorem [4] ensures that E exists and does not depend on the initial 
conditions (q(xl) ,  V’(x1)) nor on xl. The choice of the set {x,} is free because the 
continuity of the wavefunction and of its derivative ensure that, for x < x’ < x” ,  

M(x, x’; E)M(x’, x ” ;  E )  = M(x, x”; E).  (4) 
This property allows us to choose the extrema of the insertion potentials, W ( x ) ,  as {x,}. 

If, for a particular energy E * ,  the transfer matrix Mw(O, L ;  E * )  for transfer across 
the potential W is equal (apart from an overall phase) to the identity matrix 

M w(O, L ,  E * )  = elel ( 5 )  

its contribution to the matrix product in (3) is trivial. Thus the localisation length Ev in 
the potential V ( x )  at the energy E * is related to E U  in U ( x )  by 

Ev(E*)  = ( l / P U > E U ( E * >  (6) 

where pa is the fraction of length occupied by U(x)  in V ( x ) .  From (6) it follows that if 
there exists an extended state in U ( x )  at E *, there will be a corresponding extended 
state in V ( x )  at the same energy. 

The same conclusion is reached if we build the wavefunction with the potential V ( x )  
at the energy E * starting from the wavefunction of U ( x )  at the same energy. Condition 
(5) on Mw(O, L ,  E * )  is equivalent to stating that the Schrodinger equation for W ( x )  on 
[0, L ]  with arbitrary periodic boundary conditions must have solutions at energy E*.  
The wavefunction of V ( x )  at E *  is therefore everywhere equal to that of U ( x ) ,  except 
in the insertions where it is matched with the appropriate solution of W ( x ) .  

We stress that to obtain extended states in V ( x ) ,  the potentials W ( x ) ,  which are 
inserted in U @ ) ,  do not need to be all equal. In fact the only condition we require is that 
they satisfy equation (5) at the same energy E * .  In particular, the W ( x )  can even be 
chosen randomly from a set of potentials, as we will show. We remark that the matrix 
Mw does not change if a constant potential is added to W ( x ) .  However, the resonant 
energy E * will shift correspondingly. Therefore by adding a suitable constant potential 
to the insertion potentials W we can fix the resonant energy at a selected energy level of 
an extended state of U@). 
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Figure 1. The reciprocal of the localisation length 
as a function of energy for the model described in 
the text. Curve A refers to the periodic Kronig- 
Penney potential; curve B to the random system 
obtained by insertionsof a flat zero potential. The 
arrow indicates the resonant energy E " .  
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As an example, we take as the underlying potential U ( x )  a periodic Kronig-Penney 
potential with barriers of finite height Ub. All solutions of the Schrodinger equation are 
extended and the allowed energy levels can be grouped into bands. As the insertion 
potential W ( x ) ,  we consider a flat zero potential on a length L.  The resonance condition 
( 5 )  is satisfied for energies 

E,, = n2fi2n2/2mL2 (7) 
where m is the particle mass and n is an integer. We choose the energy E* in an energy 
band of the periodic potential. Then, in order to obtain an extended state in V ( x )  at this 
energy, we take the length L such that E* = E,, for an integer n. All the extended states 
of the periodic potential will localise, except those at energies E,, and in particular the 
one at E *. In this way, the random insertions act as a filter for the selected energy. We 
notice that if E * < Ub we obtain perfect transmission by coherent tunnelling in a random 
potential. For this case we present in figure 1 numerical results that show how the 
localisation length for states of energies close to the selected energy E * is modified by 
the random insertions of potentials W .  The results reported in the figure refer to GaAs/ 
Gal -,Al,As heterostructures. The motion of conduction electrons in these materials is 
subject to a one-dimensional potential profile, which can be produced artificially [5] .  
We considered as U(x)  the potential of a periodic 21.4 A/21.4 A GaAs/Gao,6Alo,4As 
superlattice, and as V ( x )  the potential of the random heterostructure obtained by 
increasing the length of each GaAs layer (potential well) by n x 56.6 A where n takes 
the values 0 , 1 , 2 , 3  with equal probability. In the random system, the resonance occurs 
at E * = 177 meV. From figure 1,  we see that all the states except the one at E * are 
localised by the randomness. 

We present, as another example, a case where not only are the insertions random, 
but also the insertion potentials W ( x )  are chosen randomly from a set of potentials. We 
consider an underlying flat zero potential and insert, randomly, square wells or barriers. 
The height of the inserted potential WL (positive for barriers and negative for wells) 
may vary in a given range [Wmin, W,,,], and the length L is related to W ,  by 

E* = fi2ma2/2mL2 + W L  (8) 
where E* > W,,, is a constant and n is an arbitrary integer. This system presents only 
one extended state, at the selected energy E*.  

Denbigh and Rivier [2] considered a Kronig-Penney potential where the barriers, 
all of the same height and width, are located at random distances from each other. They 
showed that this random potential allows for an infinite discrete spectrum of extended 
states with energies above the barriers. This potential belongs to the class of potentials 
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described above. In fact, it can be obtained from the last example by taking Wmi, = 
W,,, = W > 0 and fixed L.  Since W and L are fixed, all the E* obtained from (8) for 
different n correspond to extended states. 

Denbigh and Rivier generalised this case by considering, instead of square barriers, 
other potentials that allow perfect transmission at some energy E*.  In this case M,(E*) 
does not necessarily satisfy condition ( 5 ) .  However, if the underlying potential is flat 
and if all the insertions of W ( x )  are separated from each other, weaker conditions on 
the matrix Mw can be found. In fact if, for an energy E * ,  the matrix Mw(O, L ;  E * )  
corresponds to a transfer matrix for transfer across a flat potential of arbitrary length 
(perfect transmission), an extended state at E * will be found in V ( x ) .  This can be seen 
from equation ( 3 ) ,  since now, at this energy, all matrices represent transfer across a flat 
potential. 

In conclusion, we have described a class of one-dimensional random potentials that 
allow for extended states. We have shown the existence of random potentials that are 
able to localise all states but one. By constructing these potentials appropriately, we can 
fix the energy of this state arbitrarily. 

We acknowledge useful discussions with H Kunz. 
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